

Problem statement

- net sediment deposition has required periodic dredging
- sediment control is now focusing on identifying sources
- previous studies
- sources of coarse sediment that are close
- suspected high sediment load

Is the Dry Creek tributary potentially a significant source of coarse sediment to the Alameda Creek Flood Control Channel?

Study components

- Sources?
- Storage?
- Sediment transport ability?
- Evidence of excessive sediment supply?
- Sediment yield?

Bedrock geology

- Cretaceous sandstones and shales
- Miocene sandstones and shales
- Jurassic ophiolite
- Hayward fault zone, tectonic uplift of 1.5 mm/yr

Sources of sediment

- Channel erosion
- Landslides and debris flows
- Hillslope erosion
- Roads and trails
- Urban sources

USGS Debris flow mapping

Debris flows triggered by the El Nino rainstorm of February 2-3, 1998 Walpert Ridge and vicinity, Alameda County, California (Coe and Godt, 2001)

Roads and trails

Urban sources

The urban area downstream of Mission Blvd is 1.5 km², or 6% of the total watershed area

Using an estimate from Zone 4 Line A, we can refine our calculations of average sediment yield for this area

Sediment storage

Floodplains

Estimate of fan volume

- Roughly rectangular
- 105m x 31m x 1.1m = 3,573 m³ (4,673 yds³)
- = 5,700 metric tons (conservative)
- Previous dredging operations have removed 20,600 to 145,000 m³ (27,000 to 190,000 yds³)

Comparison of sediment loads

- Can not develop sediment rating curve, instead used estimates based on regional regression equations and adjacent sediment rating curves
- The average of the estimates is 337 tonnes/km²/yr
 (range 22 – 674 tonnes/km²/yr)

Annual sediment discharge

- The estimated average annual sediment discharge from Dry Creek
 337 tonnes/km²/yr * 17.5 km² = 5,900 tonnes/yr
- This is roughly 4 percent of the reported average load in Alameda Creek at Niles gage (1994-2006) 172 tonnes/km²/yr * 907 km² = 156,000 tonnes/yr
- Order of magnitude estimate

Conclusions

Is the Dry Creek tributary potentially a significant source of coarse sediment to the Alameda Creek flood control channel?

YES, but...

A need for improved data

- A number of unknowns (actual sediment yield, grain sizes, exact sources)
- Potential uses for improved data include: source control data for existing sediment transport modeling
- Placed in larger watershed context

